演習2:集合の知性を設計する

集団の知性の設計

メディア工学演習 演習2

/* 解析モードがON(Key A)のとき */ if (mode_analysis) {		Update()	
ana.SetBoid(this); //個体数(1/10)をクラスター成立の要件とする ana.SetMinimumPop((int)Mathf.Floor(bsum //クラスタを計算 ana.CountCluster();	/ 10f));		
<pre>//新しく「知り合い」が成立したボイドの数 int new_friends = ana.UpdFriendsHistory() //クラスタに半透明の球を描画 ShowClusterBall();</pre>	30); 引数 (引数	数を「30」に修正してください。 引数は「知り合い」とみなす、連 クラス々同民のスレーム物です)	
<pre>//カウンタが最大値(初期値1000)となるまで、解析 if (cls_count < countmax) { //クラスタのフレーム内総数 cls_sum += ana.csum; //クラスタの1フレーム平均 cls_mean = cls_sum / cls_count; //計算フレーム数 cls_count++;</pre>	「を続け		
<pre>//新しい知り合いが一件でも成立すれば、 //「知り合い成立機会」を一つ増やす if (new_friends >= 1) { make_friends_frame += 1; } }</pre>	Aボタンで mode_analysis が true となると, ク ラスタのフレーム内平均(cls_mean)・知り合 い成立回数(make_friends_frame)をフレー ム数:countmax を上限として計算します.		

A 解析モードの ON / OFF の切り替え

<u>解析モードがONとなるとクラスターが可視化され, Boid Cluster Analysis コン</u> <u>ポーネントの<Csum>にクラスター数が表示されます.</u>

(ここでは、クラスターを<個体数の1/10の可視距離内集団>と定義しています)

2次元モード・3次元モード

 デフォルトでは, 400 x 400 (xz)の空間をボ イドが動き回りますが,「D」ボタンを押す と, 三次元モードとなり, 400 x 400 x 200 (xzy)の空間を使うことができるようにな ります.

□ 「Ⅰ」ボタンを押すと, すべてのボイドの位置 と速度が初期化されます.

Y 1

Z 40

Scale

X 40

 2/3
 二次元モード・三次元モードの切り替え

 I
 ボイドの位置・速度の初期化

通課題

2 二次元モードにします.

二次元空間における、ボイドの視界範囲とクラスタの数(フレーム内 平均)および、知り合い成立機会(フレーム内総和)の関係を調べ て、以下のようなグラフを作成してください。

ただし、視界範囲以外の変数は以下の値に固定してください。

neighbor_space = 10, pop = 50, c1 = 0.1; c2 =15; c3 = 0.03;

上記の条件でグラフを作成し, グラフから読み取れることを考察してく ださい. そのなかで, 自分が, <u>この群衆のメンバーであることを想像し</u> <u>て, 「**豊かな関係性とは何か**」に着目して考察してください.</u>

共通課題の詳細

自由課題

<u>二次元空間または三次元空間ボイド(どちらでもよい)において、</u> ルール1・ルール2・ルール3がクラスタ形成あるいは「豊かな関係 性の構築」にどのように関わっているか</u>について考察してください。

目視による考察でも良いが, データに基づいた考察が望ましい. この 際、目的に応じて、共通課題とは異なる変数の値を選び、c1・c2・c3 の値を変化させた時の「クラスタ数」「知り合い成立機会」の変化を 計測するなどしてみてください。

考察の中で、自分が最も「豊かな関係性」と感じる「c1・c2・c3」の 変数の値を示してください。

意欲があれば、「BoidClusterAnalysis.cs」に独自のメソッドを追記 し、新たな指標を導入してもよい。

課題C1(提出方法)

提出先

共通課題と自由課題に関する書類を一つのフォルダに入れて,そのフォル ダを圧縮したもの(「WorkC1_2050XX.zip」)を提出してください.

Dropbox のファイ
ルリクエストによ
り提出します。投稿
先のリンクは, 以下
のページから.

期限

6/19 (日)

https://lab.kenrikodaka.com/mediapractice2022/

(演習2)集合知と感染モテル					
05/18 [WEB 資料]	UNITY環境のセットアッ プ	[資料PDF]	[YOUTUBE]	[出席報告](小課題) !!5月23日締切	
05/25	BOID (ルール1)	[資料PDF]	[YOUTUBE]	[出席報告](課題) !!5月30日締切	
06/01	BOID (ルール2・ルール 3)	[資料PDF]	[YOUTUBE]	[出席報告](小課題) !!6月6日締切	
06/08 - 06/15	集合知解析	[資料PDF]	[YOUTUBE]	[出席報告]は無し [課題C1提出](集合知解 析課題) !! 締切6月19日(日)	