◯◯◯ 基本データ


dat %>% 
  filter(gender %in% c("FEMALE","MALE")) %>% count(gender) 
##   gender    n
## 1 FEMALE 2005
## 2   MALE 1684

◯◯◯ 性差



◯◯◯ 誕生日の数字の影響


誕生日数字の属性保持者間の独立性検定の結果

## # A tibble: 12 × 4
##    gender type  comparison       p.value
##    <fct>  <fct> <chr>              <dbl>
##  1 FEMALE MONTH EVEN-ODD   0.00000926   
##  2 FEMALE MONTH EVEN-PRIME 0.0000245    
##  3 FEMALE DAY   EVEN-ODD   0.000161     
##  4 FEMALE DAY   EVEN-PRIME 0.000334     
##  5 FEMALE COMBO EVEN-ODD   0.00000000555
##  6 FEMALE COMBO EVEN-PRIME 0.0000494    
##  7 MALE   MONTH EVEN-ODD   0.00132      
##  8 MALE   MONTH EVEN-PRIME 0.00171      
##  9 MALE   DAY   EVEN-ODD   0.662        
## 10 MALE   DAY   EVEN-PRIME 0.504        
## 11 MALE   COMBO EVEN-ODD   0.00948      
## 12 MALE   COMBO EVEN-PRIME 0.258


◯◯◯ 偶数好きランキング(月)



◯◯◯ 偶数好きランキング(日にち)



◯◯◯ メタ認知


## # A tibble: 4 × 5
## # Groups:   gender [2]
##   gender preference female  male crate
##   <fct>  <fct>       <int> <int> <dbl>
## 1 FEMALE EVEN          184    23 0.889
## 2 FEMALE ODD            97    43 0.693
## 3 MALE   ODD           112    53 0.679
## 4 MALE   EVEN           93   106 0.467


◯◯◯ 利き手


dat %>% count(domhand)
##   domhand    n
## 1   RIGHT 2976
## 2    LEFT  230
## 3     ETC   13
## 4    <NA>  483


◯◯◯ 年齢


##   X.1 X12 X13 X14 X15 X16 X17  X18  X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29
## 1   7   2   3   1  33  57  36 1248 1138 341  89  31  33  17  14   9   7   6   7
##   X30 X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X44 X45 X46 X47 X48 X49
## 1   6   3   3   3   2   6   4   5   2   2   3   2   6   5   3   3   4   5   4
##   X50 X51 X52 X53 X54 X55 X56 X57 X58 X59 X61 X62 X63 X64 X65 X66 X67 X68 X69
## 1   3   6   5   4   4   3   1   6   2   4   4   3   2   2   2   3   1   1   1
##   X71 X73 NA.
## 1   1   1 493
## # A tibble: 10 × 6
## # Groups:   gender [2]
##    gender   age  even   odd     n erate
##    <fct>  <int> <int> <int> <int> <dbl>
##  1 FEMALE    17    25     4    29 0.862
##  2 MALE      17     5     2     7 0.714
##  3 FEMALE    18   488   273   761 0.641
##  4 MALE      18   268   216   484 0.554
##  5 FEMALE    19   407   216   623 0.653
##  6 MALE      19   270   241   511 0.528
##  7 FEMALE    20   102    65   167 0.611
##  8 MALE      20    87    86   173 0.503
##  9 FEMALE    21    25    13    38 0.658
## 10 MALE      21    23    28    51 0.451